El puzle del cuadrado sobrante

Aunque parezca un fallo en la Mátrix, no lo es, y este truco tiene una explicación mundana.

El puzle del cuadrado sobrante

  • Solo necesito tiempo, que es lo que no tengo.

  • Al final la explicación, así tan bien ilustrada gráficamente, no tengo más remedio que entenderla. Pero desde luego que a mí estas cosas siempre me dejan turulato.
    Y… Ese de la tableta de chocolate que muestra brevemente al principio ¿también está por aquí, explicado y todo?

    No me sé yo muchos birlibirloques de éstos. Lo que me ha venido a la cabeza, por asociación espontánea de ideas (y que admito que igual no viene tan y tan a cuento) es que había una vieja discusión que no sé si nadie ha llegado a dar por resuelta. Yo tengo para mí que no es más que una cuestión semántica, y que igual tendría que ser la RAE quien se pronunciase al respecto.
    La tontería era la siguiente: ¿Estamos diciendo lo mismo si hablamos de «medio metro cuadrado» que si hablamos de «la mitad de un metro cuadrado»? ¿Cómo habría que entenderlo en cada caso? ¿Depende de que el propio contexto lo aclare mejor en cada ocasión?
    No digo que no sea una chorradilla, pero luego uno se encuentra con que dos cualesquiera lo discuten y no se ponen de acuerdo.

  • @ Alexis.
    La explicación al chocolate infinito la tienes aquí:

    https://lamentiraestaahifuera.com/2016/06/20/el-truco-del-chocolate-infinito/

    Y respecto a los cm2, puedes decirlo de las dos maneras, pero por economía yo diría medio cm2.

  • @ lamentira:

    Gracias. ¡Buenísimo también lo del chocolate! No lo había visto antes.

    ¡Ejem!… Lo de la discusión aquella del metro cuadrado, ciertamente lo dejé caer sin concretar en qué consistía exactamente. Así como pensando que igual habría a quien ya le sonase sin más. Es una cuestión ya vieja. Lo explico un poco ahora:

    Imaginamos el pertinente cuadrado de un metro de lado (100 cm. x 100 cm.). Eso es un metro cuadrado. Ahora pongamos que lo dividimos en dos mitades. Cada una sería un rectángulo de 50 cm. x 100 cm. Y eso sería «la mitad de un metro cuadrado».

    Igual que «la mitad de una manzana» es «media manzana», esa «mitad de un metro cuadrado» sería igualmente «medio metro cuadrado».

    Pero aquí salta quien defiende que decir «medio metro cuadrado» es aludir a la superficie de un cuadrado de medio metro de lado (50 cm. x 50 cm.). Lo cual ya no es «la mitad de un metro cuadrado», sino sólo la cuarta parte.

    Y aquí se lía.

    (Habría quedado bien acompañarlo con unos sencillos dibujitos, pero como ni siquiera sé si los podría trasladar del Paint brush aquí al texto ya ni me lo he propuesto. De todos modos la «visualización» del tema es lo bastante sencilla como para no requerir más).

    Saludos.

  • Buenas y feliz año. Bastante tiempo sin escribir por aquí

    He flipado…. hasta que has dado la explicación, la cual me ha dejado un poco chof…

    Creo que ya lo había visto esto antes o uno parecido

  • <

  • Alexis dijo:

    Al final la explicación, así tan bien ilustrada gráficamente, no tengo más remedio que entenderla. Pero desde luego que a mí estas cosas siempre me dejan turulato.
    Y… Ese de la tableta de chocolate que muestra brevemente al principio ¿también está por aquí, explicado y todo?

    No me sé yo muchos birlibirloques de éstos. Lo que me ha venido a la cabeza, por asociación espontánea de ideas (y que admito que igual no viene tan y tan a cuento) es que había una vieja discusión que no sé si nadie ha llegado a dar por resuelta. Yo tengo para mí que no es más que una cuestión semántica, y que igual tendría que ser la RAE quien se pronunciase al respecto.
    La tontería era la siguiente: ¿Estamos diciendo lo mismo si hablamos de “medio metro cuadrado” que si hablamos de “la mitad de un metro cuadrado”? ¿Cómo habría que entenderlo en cada caso? ¿Depende de que el propio contexto lo aclare mejor en cada ocasión?
    No digo que no sea una chorradilla, pero luego uno se encuentra con que dos cualesquiera lo discuten y no se ponen de acuerdo.

    Pues yo no veo diferencia alguna entre esas dos expresiones :nose:

  • @ Alexis:

    Bueno, después he visto tu explicación, pero sigue sin convencerme en absoluto que el decir «medio metro cuadrado» pueda inducir al error de pensar que es un cuadrado de medio metro de lado. En el momento que te dicen «medio metro cuadrado», no hay más cáscaras. Medio metro cuadrado es la mitad de un metro cuadrado. Lo demás son ganas de tocar los eggs…. o de ser un pelín cortito, creo yo

  • @ Kurrupypy:
    Gracias por tu opinión sobre aquello que puse.

    El caso es que mi experiencia sobre el tema es, hace tiempo y hasta donde recuerdo, primero haber asistido a una discusión entre dos que no se ponían de acuerdo al respecto. Y, más adelante, haber encontrado un hilo de algún foro que planteaba el tema y donde la gente intervenía, rebatiéndose unos a otros, sin que tampoco «ganara» nadie la discusión.

    Con ese nivel de discrepancia más o menos demostrado es con lo que me quedé yo. Y con la idea de que, al fin y al cabo, sí que debe poder inducir a error, si tan dividida está la manera de entenderlo entre la gente.

    En fin. No es nada tan chulo ni flipante como esos acertijos de lógica o esos juegos de geometría engañosa a la vista, como el aquí presentado… Como ya dije es sólo una cuestión de semántica. Lo que yo no sé aún a día de hoy es si realmente la RAE debe de tener alguna norma establecida sobre maneras correctas e incorrectas de referirse a (en este caso) medidas de superficie y similares aplicable aquí.

    Saludos.



\Incluya

Puedes seguir las respuestas a esta entrada por RSS 2.0 feed.